## HORIZON: How far away is the horizon? This is a pretty famous problem in mathematics (I think). I remember seeing it and being intrigued. I think there is an opportunity for pretty rich math here. Students would have to create an abstraction to represent the situation, develop rules about their abstraction, and use them to approximate an answer to the unit question. |

## PROBLEMATIC PACKAGING: How can you optimize this packaging? This one arose out of a curiosity I had about optimizing parking lot design. I thought it might be fun as a puzzle where students get a package and different "items" (blocks of two or three sizes and shapes and worth various points) and they have to figure out how to maximize their point value. Could be extended by looking at different point values or different size boxes. |

## GET ME OUTTA HERE: How do you know if a game is solvable? I love these puzzles. I'm not exactly sure how to turn this into a full-blown unit, but I'm pretty sure it can be done. This might not be the best unit question. I have also considered giving students a specific puzzle and asking "What is the fewest number of moves?" Maybe we can extend it from there and move into "solvable" setups? |

## 7 CLICKS FROM KEVIN BACON: What is the minimum number of clicks to get to Kevin Bacon from ANY person on Facebook? This one I'm REALLY not sure about. Obviously, it comes from the popular game about social connection (although it might be a good idea to use a celebrity my student will have actually hear of). I thought there might be some connections to graph theory here and it might be a nice extension of a combinatorics unit that I will do again next year ("How many combinations are there at Chipotle?"). Feedback please. |

## WIN, LOSE, or DRAW: Can you draw this without lifting your pencil or going over the same line twice? The Bridges of Konigsberg is such a GREAT problem that I want to turn it into a whole unit next year. I'm not sure I love the context of the original problem because, to students, I think it feels like a pseudocontext. I thought about giving them a crazy network diagram and asking the unit question about that (maybe with "bridges" showing up along the way?). However, I usually prefer to start with a concrete situation and abstract from there....not sure. | ...something more complicated but this was the best picture I could find for now |

## GOING COASTAL!: How long is the California coastline? I did a similar project this year where students figured out the area of the Koch Snowflake. I'm thinking about trying to start concrete and move abstract next year with this one. I'm sure the Koch Snowflake will still rear it's ugly head somewhere in our investigation. |